A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization

نویسندگان

  • Hongchao Zhang
  • William W. Hager
چکیده

A new nonmonotone line search algorithm is proposed and analyzed. In our scheme, we require that an average of the successive function values decreases, while the traditional nonmonotone approach of Grippo, Lampariello, and Lucidi [SIAM J. Numer. Anal., 23 (1986), pp. 707–716] requires that a maximum of recent function values decreases. We prove global convergence for nonconvex, smooth functions, and R-linear convergence for strongly convex functions. For the L-BFGS method and the unconstrained optimization problems in the CUTE library, the new nonmonotone line search algorithm used fewer function and gradient evaluations, on average, than either the monotone or the traditional nonmonotone scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

A derivative–free nonmonotone line search technique for unconstrained optimization

A tolerant derivative–free nonmonotone line search technique is proposed and analyzed. Several consecutive increases in the objective function and also non descent directions are admitted for unconstrained minimization. To exemplify the power of this new line search we describe a direct search algorithm in which the directions are chosen randomly. The convergence properties of this random metho...

متن کامل

Modified Limited Memory Bfgs Method with Nonmonotone Line Search for Unconstrained Optimization

In this paper, we propose two limited memory BFGS algorithms with a nonmonotone line search technique for unconstrained optimization problems. The global convergence of the given methods will be established under suitable conditions. Numerical results show that the presented algorithms are more competitive than the normal BFGS method.

متن کامل

The Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems

The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004